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ABSTRACT
By reusing experiences collected from past different policies, ex-
perience replay significantly improves the training efficiency of
reinforcement learning algorithms. Rapid convergence occurs when
learning is based on pertinent experiences that offer valuable infor-
mation. Nonetheless, how to effectively combine experience replay
with multi-agent reinforcement learning is still an open challenge.
We study how sharing collected experiences helps the training pro-
cess and show that sharing a small amount of selected experiences
between agents improves the learning process compared to the
baseline where each agent is independent. The shared experiences
are selected by each agent on internal statistics, ensuring their
meaningfulness. Our first results on the multi-agent Pursuit envi-
ronment highlight an improvement by a large margin and need to
be consolidated by complementary experiences.
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1 INTRODUCTION
Multi-Agent Systems [32] have benefited fromReinforcement Learn-
ing [29, RL] as it enabled to address many issues [36]. In particular,
RL has made improvements in adaptive decision-making [3], han-
dles partial observability [24], promotes emergent behavior and
self-organization [16], provides decentralized control tools [25] and
allows agents to generalize over different tasks thanks to trans-
fer learning [8]. However, when each agent learns independently,
Multi-Agent Reinforcement Learning (MARL) experiences diffi-
culties in the learning process due to the non-stationarity of the
environment. Even though the convergence guarantees of MARL
are an active field of research [13], MARL still succeeds in learning
in complex environments [30].

In deep RL, neural network policies and value functions can be
learnt thanks to stochastic gradient descent algorithms [26, SGD]
sampling an experience replay memory [18]. This replay memory,
or replay buffer, stores the transitions encountered along the inter-
action with the environment. SGD-based algorithms exploit such
buffers to learn relevant functions, such as theQ-function in the case
of Deep Q-Networks [21], the return distribution for distributional
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approaches [2], or an actor and a critic [11, 17] in the case of continu-
ous state-action space problems. Most deep RL algorithms boildown
to a sequence of SGD-based, supervised learning problems. In su-
pervised learning, importance sampling can be used to speed up
the convergence of SGD, by sampling non-uniformly the training
set to reduce the variance of the stochastic gradient estimate. As
there is a link between supervised learning and RL, accelerating
the convergence thanks to non-uniform sampling has also been
explored in the latter with Prioritized Experience Replay [27, PER],
drawing inspiration from Prioritized Sweeping [22]. Extensions,
modifications, and foundations of PER have been proposed, such as
[34] and [15]. In this paper, we show that some of the techniques ini-
tially designed to accelerate convergence speed in the single-agent
case can be used to help agents in their learning process.

In a partially observable environment which is "anonymous"
(the environment behaves the same way for all agents) to homo-
geneous agents collecting at each time step their own reward, this
work proposes a sharing-experience scheme among agents. Each
agent is initialized with its own neural network and replay buffer.
At each learning step, each agent updates its neural network pa-
rameters thanks to an SGD step with a mini-batch composed of
experiences from its own replay buffer, as well as experiences col-
lected by other agents. The relevance of a given experience to a
given agent is checked before being used for the SGD step thanks
to statistics specific to the updated agent. Our experience-sharing
method compares to independent learning, where agents are initial-
ized with their own neural network and replay buffer and do not
share anything. We evaluate the benefit of sharing a small amount
of experiences collected by other agents in a mixed collaborative-
competitive environment.

This work is structured as follows. Section 2 covers related work
in MARL and importance sampling for RL. Then Section 3 proposes
an algorithm to improve learning in multi-agent settings by sam-
pling efficiently useful experiences collected by the other agents.
Section 4 empirically evaluates the proposed algorithm. We discuss
each separate aspect of sampling, its explanations and perspectives.
Section 5 discusses the limitations of this work and contrasts our
findings with the existing literature. Section 6 summarizes and
concludes.

2 BACKGROUND
We model our MARL problem as a Partially Observable Stochastic
Game (POSG), a generalization of Stochastic (Markov) Games [19]
to settings where agents are only able to observe parts of the state
of the environment [12]. A POSG is a tuple (𝑀,S,A,T ,R,O,T𝑒 ),
where𝑀 is the number of agents, S is the set of all possible global
states of the environment, A := 𝐴1 ×𝐴2 × ... ×𝐴𝑀 represents the



Figure 1: Illustration of the Large Batch Sharing algorithm in the case of two agents.

set of actions, where𝐴𝑖 is the action space of agent 𝑖 , T : S×A →
Δ(S) is the transition probability function between global states,
based on the joint action of the agents, R := 𝑅1 × 𝑅2 × ... × 𝑅𝑀 is
the reward function, where 𝑅𝑖 : S × A × S → R is the individual
reward function of agent 𝑖 , O := 𝑂1 × 𝑂2 × ... × 𝑂𝑀 is the set of
observations with𝑂𝑖 representing the individual observation set for
each agent 𝑖 , and T𝑒 : S × A → Δ(O) is the observation function.

The behaviour of an agent is defined by its policy 𝜋𝑖 : 𝑂𝑖 ×𝐴𝑖 →
[0, 1]. The performance of a policy can be assessed through its Q-
function 𝑄𝜋𝑖 = E[∑𝑡 𝛾

𝑡𝑟𝑖,𝑡 |𝝅], where 𝝅 = (𝜋1, ..., 𝜋𝑀 ) is the joint
policy of the agents acting in the environment, 𝛾 ∈ [0, 1] is the
discount factor, and 𝑟𝑖,𝑡 = 𝑅𝑖 (𝑠𝑡 , 𝒂𝑡 , 𝑠𝑡+1) is the reward obtained by
agent 𝑖 at time step 𝑡 for the joint action 𝒂𝑡 ∈ A at state 𝑠𝑡 ∈ S and
transitioning to the next state 𝑠𝑡+1 ∈ S. The goal of each agent is
to find their policy 𝜋∗

𝑖
that has the largest possible Q-function.

As set previously, this work focuses on agents receiving their
own reward in a partially observable environment that reacts to
each agent the same way. If an action taken by an agent in a par-
ticular state yields reward, so does the environment for any other
agent (the environment is said to be "anonymous"). We also make
the assumption of homogeneous agents, sharing the same set of in-
dividual actions. All assumptions related to our multi-agent setting
will be discussed in Section 5 along with extensions and limitations
of our work.

In such a framework, two baseline algorithms can be used. First,
one single agent, taking as input the observation and outputting
the action for the agent receiving the observation can be trained
thanks to the gathering of the agents’ interactions with the en-
vironment. This method belongs to the Parameter Sharing (PS)

algorithms, where neural network(s) and replay buffer (if any) are
shared among all agents. The second baseline we consider are inde-
pendent learners, where each agent trains its own neural network(s)
thanks to its own interactions with the environment. Neural net-
work(s) parameters (and replay buffers) remain private.

Our contribution, consisting in designing an efficient sharing
of experiences between agents, can be applied to any underlying
model-free deep RL algorithm using a replay buffer. For pedagogical
purposes, we focus on the Deep Q-Networks [21, DQN] algorithm,
which is off-policy and designed for discrete actions, and we will
explain in Section 5 how the proposed methods can be extended to
other settings.

In single-agent RL with full observability, the optimal Q-function
obeys equation 𝑄∗ (𝑠, 𝑎) = E𝑠′,𝑟 [𝑟 + 𝛾 max𝑎′ 𝑄∗ (𝑠′, 𝑎′)], called the
Bellman optimality equation. DQN is the approximate Value Iter-
ation algorithm that uses a replay buffer of 𝑁 samples (𝑠, 𝑎, 𝑟, 𝑠′),
a deep neural network 𝑄𝜃 , and a few steps of gradient descent
to minimize the Bellman optimality equation. Specifically, at each
training step, DQN aims to take a gradient step on the empirical
loss 1

𝑁

∑𝑁
𝑖=1 ℓ (𝑄𝜃 (𝑠𝑖 , 𝑎𝑖 ), 𝑦𝑖 ), with 𝑦𝑖 = 𝑟𝑖 +𝛾 max𝑎′ 𝑄𝑛 (𝑠′𝑖 , 𝑎

′). Min-
imization of this empirical loss by SGD implies drawing at each step
a mini-batch of 𝐵 transitions from the replay buffer and taking a
descent step 𝜃𝑡+1 = 𝜃𝑡 −𝜂𝑑 in the direction of the gradient estimate
𝑑 = 1

𝐵

∑𝐵
𝑖=1 ∇𝜃 ℓ (𝑄𝜃 (𝑠𝑖 , 𝑎𝑖 ), 𝑦𝑖 ), with learning rate 𝜂.

To the best of our knowledge, Prioritized Experience Replay [27,
PER] is the first work introducing a non-uniform sampling of the
replay buffer to accelerate the convergence of the DQN algorithm
from an empirical perspective. At each iteration, PER samples a
mini-batch according to the probability distribution induced by a



list of priorities, performs a gradient step and updates the priori-
ties of the selected samples. PER drew inspiration from Prioritized
Sweeping [22] and used TD errors as priorities without mathemati-
cal justification. Even though PER lacks theoretical foundations, a
large number of publications experimentally demonstrate its bene-
fits. Notably, the ablation study of [14] showed PER to be one of the
most critical improvements over DQN. [15] cast prioritization of
samples in RL as importance sampling and proposed non-uniform
sampling schemes aiming at accelerating the convergence speed
of SGD. It brought theoretical foundations to many prioritization
algorithms, especially PER, and proposed more grounded sampling
schemes. One of the proposed algorithm, LaBER (for Large Batch
Experience Replay), consists in sampling uniformly a large batch
from the replay buffer (hence the name), computing TD errors on
this large batch and finally down-sampling the large batch to a
mini-batch according to the distribution induced by the TD errors.
Note that, contrarily to PER, the TD errors are up-to-date, and this
difference allows a more accurate sampling scheme.

3 LARGE BATCH SHARING
In this work, we reuse the idea of a large batch, but we fill it with
experiences collected by all agents which communicate. Then, we
compute the TD errors on this large batch and we down-sample
the large batch to a mini-batch thanks to the distribution induced
by the TD errors. Let 𝐵 be the mini-batch size, and 𝑁 be the size of
the replay buffers. Let 𝐾 be the large batch size, so that 𝐾 = 𝐵𝑀 ,
where 𝑀 is the number of agents. Our algorithm, named Large
Batch Sharing and illustrated in Figure 1, goes as follows.

For each agent 𝑖 ∈ [1;𝑀], 1/ draw a mini-batch of size 𝐵 from the
replay buffer with distribution 𝑝1. Aggregate the𝑀 − 1 other mini-
batches to obtain the large batch. 2/ On this large batch, compute
probability distribution 𝑝2 and down-sample the large batch to a
mini-batch thanks to this distribution. 3/ Finally, perform the SGD
step thanks to the samples in the mini-batch. We now detail the
subtleties at each step previously described.

Step 1 of the algorithm could simply consist in drawing uniformly
a mini-batch from the replay buffer (hence 𝑝1 = 𝑢, where 𝑢𝑖 =

1/𝑁, ∀𝑖 ∈ [1;𝑁 ]), but we will test different sampling, such as PER.
Step 2 computes the priority which determines which samples

will yield the better SGD step thanks to distribution 𝑝2. Note that,
if 𝑝2 and 𝑝1 are both uniform distributions, then our algorithm is
strictly equivalent to a parameter sharing baseline where replay
buffers are fully shared, but neural networks are not. We will, of
course, test this baseline but our aim is to explore different sampling
schemes. In particular, as proposed in LaBER, we take 𝑝2 as the
distribution induced by the TD-errors. By doing this, we ensure
that the samples coming from other agents really help in taking
better SGD steps.

Step 3 must be carefully implemented. As explained previously,
the SGD step in its standard form for the DQN algorithm, sampling
uniformly a replay buffer with a mini-batch of size 𝐵 is

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
1
𝐵

𝐵∑︁
𝑖=1

∇𝜃 𝑙𝑖 (𝜃 ) (1)

with 𝑙𝑖 (𝜃 ) = (𝑟𝑖 + 𝛾 max𝑎′
𝑖
𝑄𝜃 (𝑠′𝑖 , 𝑎

′
𝑖
) − 𝑄𝜃 (𝑠𝑖 , 𝑎𝑖 ))2. When impor-

tance sampling is used to obtain themini-batch, the update equation

Figure 2: Performance of the four agents in Pursuit at 800k
timesteps.

depends on the probability distribution 𝑞 (over the 𝑁 items of the
replay buffer) used for sampling (see [15] for more details):

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
1
𝐵

𝐵∑︁
𝑖=1

1
𝑁𝑞𝑖

∇𝜃 𝑙𝑖 (𝜃 ). (2)

From a theoretical point of view, we cannot discriminate between
the two. Indeed, in our multi-agent framework, the data distribution
on which the learning is rooted is unknown, contrarily to super-
vised learning. The distribution of collected experiences fromwhich
agents can learn optimally their tasks remains unknown. Hence we
cannot assess the quality of an update equation in our multi-agent
RL case using importance sampling. We will test different update
equations.

4 EXPERIMENTS
Even though many experiences remain to be run, the first results
obtain on the SISL (Stanford Intelligent Systems Laboratory) en-
vironment named Pursuit appear promising [10]. In the Pursuit
scenario, a mixed collaborative-competitive environment is pre-
sented, involving a team of pursuers aiming to capture a group
of evaders within a grid-world containing obstacles. The evaders,
depicted in blue, move randomly, while the pursuers, represented
in red, are under the control of RL agents. When a group of two or
more agents successfully surrounds an evader, each agent receives
a reward, and the evader is eliminated from the environment. The
episode concludes either when all evaders are captured or after
500 steps, whichever comes first. Pursuers earn a small reward for
being adjacent to an evader (even without complete surrounding)
and incur a slight negative reward per timestep, encouraging them
to complete episodes promptly. The setup involves 8 pursuers and
30 evaders. We perform the training for 800k timesteps and average
our results over 10 seeds.

As explained earlier, the two baselines are 1/ the independent
DQN agents (IDQN), and 2/ the parameter sharing agent (PS) own-
ing one neural network and replay buffer collecting all experiments.
Our agent uses 𝑝1 as the uniform distribution, and 𝑝2 as the distri-
bution induced by the up-to-date TD errors. We use Eq. 1 for the



Table 1: Hyperparameters

Environment hyperparamters

max cycles 500
shared reward False
horizon 500
surrounded True
tag reward 0.01
constrained window 1.0
obs range 7
x/y sizes 16/16
num evaders 30
n catch 2
n agents (pursuers) 8
urgency reward -0.1
catch rewards 5

CNN network hyperparameters

CNN layers [32, 64, 64]
Stride 1
Kernel size [2, 2]

DQN hyperparameters

learning rate 0.00016
mini-batch size 32
buffer size 120000
initial exploration epsilon 0.1
final exploration epsilon 0.001
target network update freq 1000
factor 𝐾 8

SGD update. The fourth algorithm tested (IDQN same RB) consists
in taking 𝑝1 and 𝑝2 as the uniform distribution. In this case, each
agent has its own neural network but the replay buffer is shared
by all agents. All hyperparameters for the DQN base agent are the
same for all the tested configurations to ensure a fair comparison
and are reported in Table 1.

Figure 1 shows the average sum of rewards per episode at the
end of training for each tested algorithm. This result advocates for
a high benefit of our sampling but remains to be consolidated by
other experiments. In particular, a sensitivity analysis with respect
to hyper-parameters specific to our method have to be tested. We
plan to analyze the impact of: 1/ the amount of experiences to share
between agents, 2/ the sampling distribution used for 𝑝1 and 𝑝2,
and 3/ the update equation for SGD (either Eq. 1 or Eq. 2).

5 DISCUSSIONS, LIMITATIONS AND RELATED
WORK

Our work restricts to homogeneous agents. An experience can be
useful to another agent only if this agent can also take the action
of the experience. Moreover, in the case of heterogeneous agents,
where agents do not share the same action space, the baseline algo-
rithms are different. In particular, the parameter sharing baseline
is not applicable. Our work also restricts to "anonymous" environ-
ments and could not be extended to a different setting, where a

certain action combined with a certain observation does not yield
the same reward to all agents. Note that this kind of environment
is rare in practice, and when encountered, it is often in the case of
heterogeneous agents, as in [4].

Our contribution is illustrated on collaborative systems, and it
also applies to mixed and competitive settings, as long as agents
remain homogeneous and the environment anonymous. We found
more intuitive to highlight the benefits of sharing experiences on
collaborative settings, as parameter sharing is rarely seen in practice
on competitive environments. Indeed, in such settings, agents often
explore the environment for their own profit, avoiding sharing in-
formation to maintain an advantage in the environment knowledge
compared to the competitors.

In cooperative multi-agent systems, where all agents share the
same reward at each step, our contribution can be used as well.
However, note that cooperative tasks are harder to solve compared
to collaborative ones, where each agent earns its own reward, due
to the credit assignment problem. Even though it remains to be
experimentally verified, we suspect our method to be less beneficial
in this setting. Sharing experiments between agents is likely tomake
the credit assignment even more harder to solve, since knowing
property of one experiment might help the credit assignment.

This work focuses on the DQN algorithm, as it is a common prac-
tice in the single-agent literature to study importance sampling and
prioritization on this base agent. Our contribution extends directly
to all off-policy algorithms using a replay buffer to learn a value
function. This encompasses algorithms designed for continuous
actions, such as DDPG [17], TD3 [9], SAC [11], and also distribu-
tional RL agents, such as C51 [2], QR-DQN [6], and IQN [5]. Sharing
experiences can also be performed with on-policy algorithms such
as PPO [28]. However, as prioritizing samples with policy-based
algorithms remains a difficult problem, even in the single-agent
setting, we keep this extension of our algorithm for future works.

This enumeration of limitations is necessary to understand the
scope of our study and to place it in the literature. Perhaps the
most similar work to ours is [35]. The authors use PER to select the
shared experiences, but do not check the relevance of a particular
sample for the agent which receives it, which is what we propose in
our work. [7] couple multi-task RL algorithms with a task-sampling
policy based on the intrinsic motivation paradigm. [23] propose
an exploration strategy which enables to fill the replay buffer with
experiences collected from a distribution supposed to be beneficial
for the learning process.

Prioritized sampling has also been studied in multi-agent RL
in settings different to ours. In cooperative tasks, an extended lit-
erature has been produced in recent years studying the interplay
between non-stationarity, credit assignment, and importance sam-
pling. For instance, [20] derives an importance sampling scheme
allowing to correct the distribution of the replay buffers, hence
enabling a better convergence. [1] compare to [20] but frame their
study in model-based MARL. [31] study how PER can improve of-
fline MARL thanks to a trajectory selection using Graph Attention
Networks [33].



6 CONCLUSION
This work focuses on an efficient experience sharing scheme be-
tween homogeneous agents learning in an anonymous environ-
ment. This scheme draws inspiration from the optimization litera-
ture, and our work remains an empirical study as no convergence
or improvement guarantees can be derived. This article remains a
work in progress, and the first experimental results highlight the
benefit of sharing a small amount of experiences between agents.

In the near future, complementary experiments have to be run.
Different environments have to be tested, as well as different num-
bers of agents. In particular, we would like to confirm / infirm the
following intuition: Our method brings a significant improvement
on tasks where the independent learners baseline performs well, in
environments necessitating specialization of agents. Complemen-
tary experiments will also study from an empirical point of view
the amount of experiments to be shared between agents yielding
the best learning improvement.
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