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ABSTRACT
Autonomous agents engineered for operating in real-world envi-
ronments frequently encounter undesirable outcomes or Negative
Side Effects (NSEs) when working collaboratively alongside other
agents. Even when agents can execute their primary assigned tasks
optimally when operating in isolation, their training may not ac-
count for potential negative interactions that arise in the presence
of other agents. We frame the challenge of minimizing NSEs as
a Lexicographic Decentralized Markov Decision Process. In this
framework, we assume independence of rewards and transitions
with respect to the primary assigned tasks while recognizing that
addressing negative side effects creates a form of dependence within
this context. Furthermore, we focus on minimizing NSEs arising
from interactions between a limited subset of agents in the sys-
tem. We present a lexicographic Q-learning approach to mitigate
the NSEs using human feedback models while maintaining near-
optimality with respect to the assigned tasks (up to some given
slack). Our empirical evaluation across two domains demonstrates
that our collaborative approach effectively mitigates NSEs, outper-
forming non-collaborative methods.
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1 INTRODUCTION
Autonomous agents operating in the real world frequently gener-
ate undesired outcomes [10, 12, 29] that are challenging to rectify
during their training phase. Prior works have identified several
categories of side effects, i.e., misspecification of rewards in Rein-
forcement Learning (RL) or goals in symbolic planning [2, 17, 19],
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Figure 1: Illustration of multi-agent NSEs in a boxpushing
domain. Four boxpushing robots are assigned to push boxes
in a large space. The primary policies for pushing boxes do
not require coordination. However, certain noisy surfaces
in each room produce loud sounds when agents from adja-
cent rooms simultaneously push boxes across these surfaces.
Thus, the noise creates local negative interactions or NSEs
among neighboring agents.

distributional shift in the test environment from the training envi-
ronment [16], reward gaming [6], etc. Lately, there has been a grow-
ing focus on scenarios in which an agent’s actions directly influence
the performance of other entities within the environment [1, 12].
Given the numerous settings where cooperative agents coexist and
collaborate [7, 11], it becomes essential to investigate the occur-
rence of side effects in such multi-agent environments. In this work,
we specifically focus on cooperative multi-agent settings where a
collective of agents operate in a shared environment, as seen in
scenarios like teams of robots within factory warehouses or fleets
of autonomous vehicles, but their joint actions leave impacts on
the agency of other agents or the environment itself.

In this work, we consider cooperative multi-agent settings where
multiple agents are working to complete their assigned tasks. For
example, Figure 1 presents a modified boxpushing scenario [19]
where some warehouse agents are working collaboratively to push
boxes from one place to another. Each agent’s individual model
provides precise information regarding their rewards and transi-
tion dynamics, ensuring optimal performance in their respective
primary tasks. However, these models exhibit limitations in ac-
counting for secondary effects stemming from joint actions, such as
noise generation when concurrently pushing boxes across specific



surfaces characterized by high noise levels. We focus on settings
where executing each agent’s primary policy in isolation does not
result in Negative Side Effects (NSEs), but their combined policy
does. Moreover, the agents may initially lack knowledge about the
occurrence of NSEs.

Most of the prior works have focused on mitigating NSEs in a
single agent setting and mitigated it by i) recomputing the agent’s
primary reward function [10], ii) incorporating user feedback [29],
and iii) incorporating a lexicographic multi-objective approach [19].
Recently, approaches have been developed to model the well-being
of other agents by considering the future welfare of the same
agents [12] or to facilitate the return of other agents [1, 24]. How-
ever, these approaches do not fully scale to multi-agent settings, as
only one agent is responsible for taking care of the considerations
of other agents. On the contrary, we focus on settings where all the
agents are responsible for and expected to cooperate in minimizing
the side effects. We adopt a lexicographic multi-objective approach
by formulating the problem with a Lexicographic Markov Decision
Process (LMDP) due to several reasons: i) it allows us to prioritize
the primary objective and guarantee the near-optimal performance
of the primary task, ii) it naturally handles different objectives with
different and incomparable reward units, and iii) it eliminates time–
consuming parameter tuning associated with scalarized objectives,
which do not scale well to multi-agent settings [18]. As the mini-
mization of NSEs in this scenario necessitates coordination among
the agents, the ongoing challenge lies in identifying an appropriate
coordination strategy.

Decentralized Markov Decision Processes (DEC-MDPs) provide
an important framework for modeling cooperative multi-agent
coordination problems. However, scalability becomes a major con-
cern when it comes to solving general DEC-MDPs. Therefore, re-
searchers have focused on solving restricted versions of DEC-MDPs
that are scalable yet rich enough to solve a wide array of practical
problems [3, 14]. In our work, we focus on DEC-MDPs with transi-
tion independence and locality of interaction, where a network of
agents is formed based on each agent’s limited interactions with a
small number of neighbors. For example, in Figure 1, agents from
adjacent rooms establish local interaction networks because their
joint actions are causing NSEs in the form of noise. Distributed
Constraint Optimization Problems (DCOPs) have been developed
over the past two decades to exploit these local interactions [8, 9].
To benefit from both the local interaction structure from DCOP and
planning under uncertainty, Network Distributed Partially Observ-
able MDPs (ND-POMDPs) have been developed to solve practical,
real-world problems such as sensor networks or coordination of
UAVs [14, 27]. Several variations of the Coordinated Q-learning
(CQL) approach have been proposed to solve ND-POMDPs because
of its capability of solving the problem in a model-free scalable
way with only local observability and interactions among neigh-
boring agents [27, 28]. Our particular focus lies in the collective
reward structure associated with NSEs, wherein only a subset of
agents jointly contribute to the creation of side effects with full
local observability among neighboring agents.

We present a combined approach integrating lexicographic multi-
objective learning and coordinated Q-Learning to minimize the
impacts of NSEs in a multi-agent environment. To the best of our

knowledge, there is no off-the-shelf solver for multi-agent lexico-
graphic multi-objective problems. The occurrences of side effects
are learned from human feedback, as the agents were initially un-
aware of the penalties associated with the NSEs. Agents can com-
pute and reuse their primary objective independently. Whenever
there is a negative penalty, agents coordinate with their neigh-
bors to form an interaction graph to facilitate coordinated learning.
The model-free framework in the coordination process allows the
agents to function autonomously without the necessity of shar-
ing model information, thereby safeguarding privacy. Our primary
contributions can be summarized as follows: i) formalizing the prob-
lem of multi-agent NSE as a lexicographic DEC-MDP with local
interaction, ii) defining a way to collect and generalize the joint
penalty function from human feedback, iii) presenting a solution
approach for minimizing NSEs with a Coordinated Lexicographic
Q-learning (C-LQL) solver, and iv) evaluating the performance of
our approach and comparing it to non-coordinated and single-agent
lexicographic Q-learning approaches.

2 PRELIMINARIES
In this section, we discuss the background necessary to under-
stand our proposed method. Specifically, we provide relevant defini-
tions for Decentralized Markov Decision Processes, Lexicographic
Markov Decision Processes, and Distributed Constraint Optimiza-
tion Problems, which are central to formulating the problem and
implementing the proposed approach.

2.1 Decentralized Markov Decision Processes
A Decentralized Markov Decision Process (DEC-MDP) [3, 5] is a
multi-agent MDP with 𝑛 agents which can be defined as a tuple
𝑀′ = ⟨𝑆 ′, 𝐴′, 𝑃 ′, 𝑅′⟩ where:

• 𝑆 ′ is a finite set of states with an initial state 𝑠0;
• 𝐴′ = 𝐴1 ×𝐴2 × . . . ×𝐴𝑛 is a finite set of joint actions where
𝐴𝑖 is the set of actions for agent 𝑖;
• 𝑃 ′ : 𝑆 ′ × 𝐴′ × 𝑆 ′ → [0, 1] denotes the transition function
where 𝑃 ′ (𝑠′ | (𝑠, < 𝑎1, 𝑎2, . . . , 𝑎𝑛 >) is the probability of reach-
ing state 𝑠′ when executing the joint action ⟨𝑎1, . . . , 𝑎𝑛⟩ in
state 𝑠; and
• 𝑅′ : 𝑆 ′×𝐴′×𝑆 ′ → R denotes the reward function associated
with the agents’ assigned task.

Due to the intractability of optimally solving general DEC-MDPs,
various works have focused on restricted versions of DEC-MDPs
that are easier to solve yet rich enough to represent many practical
applications. Examples include Transition and Reward Independent
DEC-MDPs, Network Distributed Partially Observable MDPs( ND-
POMDPs) [14, 25] which exploits the locality of interactions. We
consider the agents to be reward and transition independent [3]. A
DEC-MDP is transition independent if the actions taken by one
agent do not impact another agent’s transition or reward for its
assigned task. To be specific,𝑀′ is transition independent if there
exist 𝑃0 through 𝑃𝑛 such that

𝑃 ′ ((𝑠′0, . . . , 𝑠
′
𝑛) | (𝑠0, . . . , 𝑠𝑛), (𝑎0, . . . , 𝑎𝑛)) =

𝑛∏
𝑖=0

𝑃𝑖 (.)



and is reward independent when

𝑅′ ((𝑠0, . . . , 𝑠𝑛), (𝑎0, . . . , 𝑎𝑛), (𝑠′0, . . . , 𝑠
′
𝑛)) =

𝑛∑︁
𝑖=0

𝑅𝑖 (𝑠𝑖 , 𝑎𝑖 , 𝑠′𝑖 )

As a result, the DEC-MDP model can be solved as 𝑛 single
agent MDPs, with respect to the primary objective [4], and 𝜋 ′ =
{𝜋1, . . . , 𝜋𝑛}, where 𝜋𝑖 denotes the primary policy of agent 𝑖 . A pri-
mary policy, 𝜋𝑖 , is an optimal policy for𝑀 , optimizing the 𝑖𝑡ℎagent’s
primary objective defined by 𝑅𝑖 .

2.2 Lexicographic MDP
A lexicographic Markov Decision Process (LMDP) [26] is a multi-
objective MDP with lexicographic preferences over the reward
functions. An LMDP can be defined as a tuple𝑀 = ⟨𝑆,𝐴,𝑇 ,R, 𝑜,𝚫⟩
where,

• 𝑆 denotes a finite set of states;
• 𝐴 denotes a finite set of actions;
• 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is the transition function;
• R = {𝑅1, . . . , 𝑅𝑘 } is the vector of 𝑘 reward functions;
• 𝑜 denotes the preference ordering among the 𝑘 objectives;
• 𝚫 = {𝛿1, . . . 𝛿𝑘 } is the vector of slack variables with each
𝛿𝑖 ≥ 0. The slack 𝛿𝑖 denotes the allowed deviation from
objective 𝑜𝑖 to improve the quality of objective lower priority
objective 𝑜 𝑗 s.t., 𝑗 > 𝑖 .

The set of value functions is represented as V = {𝑉1, . . . ,𝑉𝑘 } where
𝑉𝑖 denotes the value function corresponding to objective 𝑜𝑖 , and
calculated as:

V𝜋 (𝑠) = R(𝑠, 𝜋 (𝑠)) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝜋 (𝑠), 𝑠′)V𝜋 (𝑠′),∀𝑠 ∈ 𝑆.

2.3 Distributed Constraint Optimization
Problems

A Distributed Constraint Optimization Problem (DCOP) can be de-
fined as a tuple ⟨𝜁 , 𝑋, 𝐷, 𝐹, 𝛼⟩ [13] where,

• 𝜁 is a set of agents {𝜁1, 𝜁2, . . . , 𝜁𝑛};
• 𝑋 is a set of discrete variables {𝑥1, 𝑥2, . . . , 𝑥𝑚}, where each
variable 𝑥 𝑗 is controlled by one of the agents 𝜁𝑖 ∈ 𝜁 ;
• 𝐷 is a set of discrete domains {𝐷1, 𝐷2, . . . , 𝐷𝑚}, where each
𝐷𝑖 corresponds to the domain of variable 𝑥𝑖 ;
• 𝐹 is a set of cost functions {𝑓1, 𝑓2, . . . , 𝑓𝑙 }, where each 𝑓𝑖 ∈ 𝐹
is defined over a subset 𝑥𝑖 = {𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 } of variables 𝑋 ,
called the scope of the function, and the cost for the function
𝑓𝑖 is defined for every possible value assignment of 𝑥𝑖 , that is,
𝑓𝑖 :𝐷𝑖1 ×𝐷𝑖2 × . . .×𝐷𝑖𝑘 → R, where the arity of the function
𝑓𝑖 is 𝑘 ;
• 𝛼 : 𝑋 → 𝜁 is a variable-to-agent mapping function that
assigns the control of each variable 𝑥 𝑗 ∈ 𝑋 to an agent 𝜁𝑖 ∈
𝜁 . Each agent can hold several variables. However, in this
paper, we assume each agent controls only one variable and
use the notation interchangeably.

An optimal solution of a DCOP is an assignment 𝑋 ∗ that minimizes
the sum of cost functions as shown below1:

𝑋 ∗ = argmin
𝑋

∑︁
𝑓𝑖 ∈𝐹

𝑓𝑖 (𝑥𝑖 ).

3 PROBLEM FORMULATION
Consider a cooperative multi-agent setting with 𝑛 agents operating
independently to complete their respective assigned tasks, which
are their primary objectives, 𝑂1 = {𝑜1, . . . , 𝑜𝑛}. The agents operate
based on a transition and reward independent DEC-MDP,𝑀′ that
contains all the necessary information to complete their assigned
tasks. However, the agents’ models do not fully capture all the ob-
jectives in the complex real-world environment in which the agents
operate. In this case, there is an additional secondary objective,
𝑂2, that the agents need to optimize to minimize NSEs. The two
objectives in 𝑀′ are: primary assigned tasks (𝑂1) and mitigating
side effects (𝑂2), where𝑂1 ≻ 𝑂2. Although the agents are transition
and reward independent w.r.t. 𝑂1, NSEs occur primarily because of
their joint interaction. Such undesirable outcomes arise because the
agents compute policies independent of other agents. Furthermore,
the agents’ model may not account for superfluous details, such as
the cumulative effects of joint operation on the environment, that
are unrelated to the agents’ task.

We make the following assumptions: i) executing the primary
policy of each agent in isolation produces no negative side effects,
but their joint policy 𝜋 ′ = {𝜋1, . . . 𝜋𝑛} produces NSEs, unknown
to the agents apriori, ii) the subset of agents interacting with each
other to produce NSEs is much smaller than the total number of
agents, iii) side effects are undesirable but not catastrophic, and
iv) side effects are experienced immediately after joint execution
in a state. Building on this, we define multi-agent Negative Side
Effects (MANSE), which indicates that the occurrence and penalty
for NSE, denoted by 𝑅𝑁 , depends on what actions agents perform
jointly in a state. We assume a given interaction graph to facilitate
the coordination between the agents.

Definition 3.1. Let 𝐺 = (𝑋, 𝐸) be an interaction graph where
each node 𝑥𝑖 ∈ 𝑋 represents an agent 𝑖 and each hyperlink 𝑙 ∈ 𝐸
connects a subset of agents to form the reward component 𝑅𝑙 .
𝐹 = {𝑓1, . . . , 𝑓𝑙 } denotes set the cost functions where 𝑓𝑙 represents
the cost function associated with each hyperlink 𝑙 . Moreover, we
define F𝑖 to be the set of functions denoting which function nodes
are connected to variable 𝑥𝑖 , representing agent 𝑖 . This hypergraph
is formed to facilitate the interaction between agents to optimize
the joint penalty where each hyperlink represents a subgroup of
agents creating NSEs.

Definition 3.2. The joint penalty function, 𝑅𝑁 : 𝑆 × 𝐴 → R
for MANSE is a divisible penalty function among subgroups of
agents and can be expressed as 𝑅𝑁 (𝑠, 𝑎) =

∑
𝑙 𝑅𝑙 (𝑠𝑙 , 𝑎𝑙 ) where 𝑙 =

{𝑖1, . . . , 𝑖𝑘 } denotes a subgroup of size𝑘 . Moreover, 𝑠𝑙 = ⟨𝑠𝑙1 , . . . , 𝑠𝑙𝑘 ⟩
denotes the state of group 𝑙 and𝑎𝑙 = ⟨𝑎𝑙1 , . . . , 𝑎𝑙𝑘 ⟩ denotes the action
of group 𝑙 .

Solving MANSE involves addressing the following challenges.
First, since the NSE penalty is defined over the joint actions, it does
1For a maximization problem, the argmin operator should be replaced by the argmax
operator.



Figure 2: Our framework for minimizing NSEs. 𝜁1, . . . , 𝜁4 denotes the agents, 𝑅𝑁 is the learned NSE penalty function from the
human feedback model and G denotes the interaction graph. 𝑓 (. . .) denotes the cost associated with each hyperlink, 𝑄1

1, . . . , 𝑄
1
4

denote the Q values for the primary objective and 𝑄𝑙 denotes the Q value for NSEs caused by group 𝑙 .

not follow reward independence. Hence, the problem can no longer
be solved as 𝑛-single agent MDPs. Second, the agents do not have
prior knowledge of other agent’s models or NSEs. Hence, 𝑅𝑁 is
unknown initially. Learning to optimize for 𝑅𝑁 might deviate the
agents from their optimal policies for the primary objective. The
maximum allowed deviation for each agent from the optimal objec-
tive value corresponding to its primary objective is bounded by its
slack value denoted by 𝛿𝑖 for each agent 𝑖 . In order to determine
if the updated policy that minimizes NSEs violates the slack con-
straints of the agent, we calculate the corresponding interference
to its primary objective.

Definition 3.3. The augmented MDP for the given MANSE prob-
lem is a lexicographic DEC-MDP (LDEC-MDP), denoted as �̃� =

⟨𝑆, �̃�, 𝑃, �̃�, 𝑜, �̃�⟩. �̃� is a DEC-MDP with two reward functions �̃� =

{𝑅1, 𝑅𝑁 } where 𝑅1 is the independent reward associated with the
primary objective and 𝑅𝑁 is the joint reward associated with NSE
of joint actions. 𝑅𝑁 follows the decomposition described in Defi-
nition 3.2. Moreover, 𝑂 = {𝑂1,𝑂2} the ordering of the objectives
where 𝑂1 = {𝑜1, . . . , 𝑜𝑛} is the primary objectives associated with
the agents’ independent assigned tasks described by reward 𝑅1.
Here, 𝑜𝑖 represents the primary objective for agent 𝑖 . 𝑂2 denotes
the objective to minimize NSEs and𝑂1 ≻ 𝑂2. �̃� refers to the collec-
tion of 𝚫 for each agent.

Ideally, we would like to solve the LDEC-MDP to reduce negative
side effects in the multi-agent setting. In the following section, we
propose a method to estimate 𝑅𝑁 using various feedback mecha-
nisms and solve the LDEC-MDP using lexicographic Q-learning
with DCOPs.

4 FRAMEWORK FOR MINIMIZING NEGATIVE
SIDE EFFECTS

In the coordinated learning approach, we assume the existence of a
simulator to facilitate the learning. The NSE penalty signals ideally
come from a human providing feedback on agents’ actions. In this
framework, we assume the simulator learns a predictive model

of NSEs by gathering information from humans to mimic human
feedback. Based on the learned model, the agents form a combined
LDEC-MDP to solve. We follow a model-free Lexicographic Q-
learning approach [22] using DCOPs to find a lexicographically
optimized policy for our problem. Our complete solution frame-
work for minimizing NSEs is illustrated in Figure 2 and involves
the following two steps: (1) gathering information about NSEs us-
ing human feedback and generalizing them to unseen situations;
(2) using a coordinated learning approach to solve the augmented
LDEC-MDP.

4.1 Learning Joint NSE Model
During the coordinated learning phase, the oracle, typically repre-
senting human feedback, provides signals about undesirable actions.
Alternatively, the simulator can simulate the reward signals for the
occurrences of NSEs by learning the human feedback model even
when perfect human feedback is unavailable. We consider human
feedback in the form of approval using two different methods: ran-
dom queries and trajectories.
Approval based on random queries The Simulator randomly
selects joint state-action pairs, without replacement, to query the
human, given a budget. The human, in turn, either approves or
disapproves the joint action in those states, indicating the NSE
occurrence. The approved actions are mapped to zero penalty,
𝑅𝑁 ((®𝑠, ®𝑎) = 0). All disapproved actions are mapped to a positive
penalty 𝑅𝑁 ((®𝑠, ®𝑎) = 𝑘) where 𝑘 is problem-specific. As the sam-
ples generated for querying by this approach are i.i.d., it does not
introduce any sampling bias in the learning process.

However, in large problems, this approach may require a large
number of samples to generate a good estimate of 𝑅𝑁 . Given the
joint state-action space increases exponentially with the increase
in the number of agents, it is often unrealistic to expect a large
number of query responses from the human. Hence, we present
an alternate querying method where the human provides feedback
based on agent trajectories.



Approval based on trajectories In this approach, the simula-
tor presents agent trajectories to the human for feedback, ®𝑇 =

(𝑇1, . . . ,𝑇𝑛), where 𝑇𝑖 is the trajectory for 𝑖𝑡ℎ agent. The trajecto-
ries are generated using an 𝜖-greedy policy of its optimal primary
policy. The human provides feedback by approving or disapproving
the actions observed in the trajectories, similar to the random query-
ing approach. This approach provides a sample efficient way to
gather information about side effects since the feedback is collected
for states that are visited by the agents. This approach, however,
suffers from bias induced by correlated samples since the states
visited are not i.i.d..
Model learning After collecting information about 𝑅𝑁 , the Simu-
lator generalizes the observations to unseen situations by training
a random forest classifier (RC). The RC model is used to estimate a
penalty by predicting the severity of the NSE. Finally, the simulator
obtains an NSE penalty function 𝑅𝑁 that maps the joint state-action
pairs to the NSE penalty value according to their severity. In prac-
tice, any classifier may be used to predict NSE occurrence. We
assume the collected human feedback is perfect and noise-free, and
the generalized feedback data that the simulator uses captures the
human feedback model correctly.
4.2 Coordinated Lexicographic Q-learning
In this section, we demonstrate how the agents learn to minimize
NSEs jointly with the penalty they receive from the simulator using
Coordinated Lexicographic Q-learning (C-LQL). We use a com-
bination of approaches: (1) a lexicographic Q-learning solver for
LMDP [22], and (2) a Coordinated Q-learning (CQL) approach that
uses a DCOP solver to acquire joint Q-values for NSE minimiza-
tion [27]. We use a model-free LMDP solver as the backbone of our
approach. Such lexicographic solvers work by restricting actions
available for each objective according to their priority. Let 𝐴 𝑗

𝑠,𝑖
be

the set of available actions that the 𝑖𝑡ℎ agent has for optimizing 𝑜 𝑗
in state 𝑠 and 𝑄1

𝑖
be the set of Q values for optimizing the primary

objective of agent 𝑖 . 𝜂 𝑗
𝑖
is the state level slack computed from the

global slack Δ 𝑗
𝑖
for 𝑜 𝑗 of agent 𝑖 . We can use the following equations:

𝐴1
𝑠,𝑖 = 𝐴1

𝑖 (1)

𝐴2
𝑠,𝑖 = {𝑎 ∈ 𝐴

1
𝑖 |𝑄

1
𝑖 (𝑠, 𝑎) ≥ max

𝑎′∈𝐴1
𝑠,𝑖

𝑄1
𝑖 (𝑠, 𝑎

′) − 𝜂 𝑗
𝑖
} (2)

In our case, the primary objective is the agents’ assigned tasks, 𝑂1,
which can be solved by single-agent Q-learning, and therefore, the
agents do not coordinate for updating 𝑄1. Furthermore, at each
step of the Q-learning, each agent 𝑖 shares its pruned action set, 𝐴1

𝑖
as the domain, 𝐷𝑖 for the DCOP. Let 𝑄𝑁 be the set of Q values for
optimizing objective𝑂2 and derived from the NSE reward function,
𝑅𝑁 . Definition 3.2 allows to decompose the joint Q values, 𝑄𝑁 and
enables the agents to calculate it in a distributed manner. 𝑄𝑁 can
be decomposed among the agents in the following way where 𝑙
denotes a subgroup of agents defined in Definition 3.2:

𝑄𝑁 =
∑︁
𝑙∈𝐸

𝑄𝑙 (𝑠𝑙 , 𝑎𝑙 ) (3)

In each subgroup, the agents select a delegate agent to store and
update the Q tables for each 𝑄𝑙 . Note that the delegates can be
chosen randomly for each group. The update rule for each group 𝑙

can be written as:

𝑄𝑙 (𝑠𝑙 , 𝑎𝑙 ) = (1 − 𝛼)𝑄𝑙 (𝑠𝑡𝑙 , 𝑎
𝑡
𝑙
) + 𝛼 [𝑟𝑡

𝑙
+ 𝛾 ∗𝑄𝑙 (𝑠𝑡+1𝑙

, 𝑎∗
𝑙
)] (4)

Here, 𝑎∗
𝑙
defines the optimal action for group 𝑙 . Let 𝑎∗

𝑖
be the op-

timal action for agent 𝑖 at each time step. Equation 4 has all the
local components that the agents can calculate locally from their
subgroups except the optimal action 𝑎∗

𝑙
which requires the agents

to coordinate. The agents then form a DCOP with the following
objective to find joint optimal action 𝑎∗ so that:

𝑎∗ = argmin
𝒂

∑︁
𝑓𝑙 ∈𝐹

𝑓𝑙 (𝑠, ⟨𝑎𝑙1 , . . . , 𝑎𝑙𝑘 ⟩) = argmin
𝒂

∑︁
𝑙

𝑄𝑙 (𝑠𝑙 , 𝑎𝑙 ) (5)

An overview of the C-LQL approach is shown on Algorithm 1.
The agents obtain ⟨𝑄1

1, . . . , 𝑄
1
𝑛⟩ and𝑄𝑁 after the end of the learning

phase. In the execution phase, the agents first observe the current
state of other agents, prune the available action set using Equation 2
and choose the lexicographically optimal action by solving DCOPs.
The agents, however, do not require information about other agents’
transition or reward models to conduct the optimization. Here
we use the Max-sum algorithm [23] for solving the above DCOP
because it has less communication overhead compared to other
exact solvers.

Algorithm 1: C-LQL for agent 𝑖
Input :�̃� = ⟨𝑆, �̃�, �̃�,𝑂, �̃�, 𝛾 ⟩

1 initialize𝑄1
𝑖

2 if 𝑖 is a delegate agent then
3 initialize𝑄𝑙 for all 𝑙 ∈ F𝑖
4 𝑠 ← 𝑠0, 𝑡 ← 0
5 while𝑄1

𝑖
,𝑄𝑙 ∀𝑙 ∈ F𝑖 have not converged do

6 𝐴2
𝑖
← Prune actions using Equation 2

7 Send 𝐴1
𝑖
to each agent 𝑎 𝑗 ∈ 𝑙 , ∀𝑙 ∈ F𝑖

8 𝑎∗
𝑖
← Select optimal action using DCOP by optimizing

Equation 5
9 𝑠′ ← 𝑇 (𝑠, 𝑎∗

𝑖
)

10 Update𝑄1
𝑖

11 if 𝑖 is a delegate agent then
12 Update𝑄𝑙 , ∀𝑙 ∈ F𝑖 using Equation 4
13 else
14 Share (𝑠, 𝑎) with delegate

15 if 𝑠′ is terminal then
16 𝑠 ← 𝑠0
17 else
18 𝑠 ← 𝑠′

19 𝑡 ← 𝑡 + 1

5 EXPERIMENTAL SETUP
Boxpushing We consider a modified multi-agent boxpushing do-
main [20, 21] inwhich the actor is required tominimize the expected
time taken to push a box to the goal location. The actions succeed
with probability 0.9 and may slide clockwise with probability 0.1.
Each state is represented as ⟨𝑥,𝑦, 𝑏⟩ where 𝑥 , 𝑦 denote the agent’s
location and 𝑏 is a boolean variable indicating if the agent is push-
ing the box. We have another unmodeled variable 𝑐 which indicates
the surface type. We assume each agent is working on a designated



(a) Effect of slack on NSE, 6 agents (b) Effect of slack on average primary objective𝑉1, 6 agents

Figure 3: Effect of slacks on the primary objective and remaining % of NSEs using different approaches for boxpushing problems.

(a) Effect of slack on NSE, 5 agents (b) Effect of slack on average primary objective𝑉1, 5 agents

Figure 4: Effect of slacks on the primary objective and remaining % of NSEs using different approaches for painter robot
problems.

separate area and so, not violating any of the coordination con-
straints (i.e., colliding with other agents). Agents create noise when
they push the boxes on the surface type 𝑐 = 𝑁 . When a single agent
pushes the box, the noise is negligible. However, when multiple
agents push the boxes on surface type 𝑐 = 𝑁 , it creates side effects.
To be precise, pushing the box together on a surface type 𝑐 = 𝑁

produces noise and results in NSEs with a penalty of 10, and no
NSE otherwise. Although in this example, the side effect penalty is
a function of the surface types, in more generalized settings, the
side effects can be random and occur in any location of the state
space.
Painting Cobots We introduce a painting environment with sev-
eral narrow corridors where multiple painter robots are deployed in
parallel with humans to cover large surface areas more efficiently.
We assume each robot has its designated area of the environment
to paint. However, there are some narrow corridors that can be
inconvenient for humans if blocked or occupied by preferred num-
bers of agents. The agents are expected to maximize the reward
obtained by painting their assigned areas. The robot can move in
all four directions and choose to paint (if designated). The primary
objective is to finish the painting as quickly as possible. Each state
is represented by ⟨𝑥,𝑦, 𝑝, 𝑐, ℎ⟩ where 𝑥,𝑦, 𝑝 denotes the agent’s lo-
cation and the painting areas, 𝑐 denotes a corridor, and ℎ denotes

the existence of a human nearby. When more than one robot enters
a corridor at a time, it creates congestion which produces a penalty
of 5 if the human is not present in the corridor and a penalty of 10
if the human is in the vicinity.
BaselinesWe compare two baselines with the Coordinated Lexico-
graphic Q-learning (C-LQL) approach. The first is the Independent
Lexicographic Q-learning (I-LQL) approach [19] which is a model-
free modification of the model-based LMDP solver. This approach
requires an independent reward model, 𝑅1

𝑖
, 𝑅2

𝑖
for each agent 𝑖 .

However, since the reward model 𝑅𝑁 for side effects is joint, it is
non-trivial to compute the rewards for individual agents. Therefore,
we modified the I-LQL approach by assuming an oracle individual
penalty model. However, such oracle model is hard to derive in
practical scenarios because the joint penalty primarily occurs due
to the interaction between agents. Our second baseline is the No
Communication Lexicographic Q-learning (NoCom-LQL) approach
where the agents learn individual Q functions by dividing the joint
penalty, 𝑅𝑙 equally among each member of group 𝑙 . For the interest
of clarity, we make the distinction between I-LQL and (NoCom-LQL)
in the way the individual rewards are obtained. I-LQL assumes an
individual reward model whereas NoCom-LQL receives the actual
joint reward by interacting with the environment in a model-free



way. Additionally, Prior denotes the amount of side effects before
minimizing NSEs.
Problem Setup We empirically evaluate our approach with the
baselines in two forms of interaction graphs: sparse and dense. The
sparse interaction graph is a tree with the maximum degree of 2
and the dense interaction graph is a tree with the maximum degree
of 3. We define small problems with the grid size of 5 × 5 for each
agent, totaling the area to 5 × 𝑛 ∗ 5 for 𝑛 agents in the boxpushing
domain. Similarly, a large problem is defined as a larger grid size of
7 × 7, totaling the area of 7 × 𝑛 ∗ 7.

We use Random forest regression from sklearn Python package
for our model learning. We follow [26] to determine state-level
slack, 𝜂𝑖 from a global slack. In all our experiments, we maximize
the rewards with𝛾 = 0.95. The results are averaged over 5 randomly
generated instances, each with 5 independent planning process. The
values are obtained by 2000 episodes of planning and averaged over
200 runs of execution.

6 RESULTS AND DISCUSSIONS

Figure 5: Minimizing Negative Side Effects across different
problem sizes in the boxpushing domain

Effect of Slack Determining appropriate slack for MANSE is not
trivial. Saisubramanian et al. [19] propose an optimal slack deter-
mination algorithm for minimizing single-agent NSEs. However,
the slack is optimal only for avoidable NSEs, a special case of NSEs
that can be avoided completely while maintaining a path to the
goal. In our problem, we do not distinguish between avoidable and
unavoidable classes of NSEs because it is nontrivial to determine
such classes for multi-agent settings. What is unavoidable for a
single-agent setting can be an avoidable setting when multiple
agents coordinate. Moreover, it is non-trivial to assign slacks to a
group of agents in this case. The lexicographic action restriction
proposed in [26] can be conservative for state-level slack alloca-
tion [15]. Therefore, we experiment with different variations of
slacks with respect to the primary objectives of each agent.

Figure 3 shows the effect of varying slack in 6 agents boxpush-
ing problem. We use a sparse setting with small grids. As the slack

Table 1: Comparison of % of slack used among different agents using
different approaches in the box-pushing domain.

Agents Approach Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 7 Average

4

Prior 0.0 0.0 0.0 0.0 n/a n/a n/a 0.0
C-LQL 4.60 0.46 7.08 4.09 n/a n/a n/a 4.06
NoCom-LQL 3.50 0.54 0.82 21.64 n/a n/a n/a 6.63
I-LQL 1.32 1.92 0.46 0.21 n/a n/a n/a 0.98

5

Prior 0.0 0.0 0.0 0.0 0.0 n/a n/a 0.0
C-LQL 8.71 7.71 8.22 5.46 6.17 n/a n/a 7.25
NoCom-LQL 0.96 16.98 0.46 9.19 9.67 n/a n/a 7.45
I-LQL 3.88 12.88 5.02 2.27 2.12 n/a n/a 5.23

6

Prior 0.0 0.0 0.0 0.0 0.0 0.0 n/a 0.0
C-LQL 5.00 3.08 0.67 1.86 3.87 0.91 n/a 2.57
NoCom-LQL 15.20 7.73 9.09 11.02 5.16 8.62 n/a 9.47
I-LQL 4.43 2.00 4.51 2.07 1.45 7.46 n/a 3.65

7

Prior 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-LQL 27.54 40.97 34.55 45.34 41.87 33.35 27.72 35.91
NoCom-LQL 37.49 41.81 48.98 51.23 42.43 42.89 54.72 45.65
I-LQL 28.92 29.58 26.31 12.47 30.75 18.76 37.73 26.36

increases, both the NSEs (Figure 3a) and the average value of the
primary objective,𝑉1 (Figure 3b) tends to decrease. Figure 3b shows
the actual slack used by the various Lexicographic Q-learning ap-
proaches. Due to the conservative estimation of the local state
slacks, the minimum value of the primary objective is still within
90% of the original value. C-LQL is able to minimize 60% of the
NSEs occurring in the joint state-action space without deviating
extensively from the primary objective. NoCom-LQL is also able
to minimize around 50% of the NSEs. However, it uses more slack
than I-LQL and C-LQL approaches. The coordination among the
agents helps to achieve less NSEs without deviating much from the
primary objective.

Similarly, Figure 4 shows the effect of varying slack in 5 agents
robot painting problems. Notably, C-LQL tends to have better per-
formance than NoCom-LQL when the given slack is more than 40%
of the primary objective (Figure 4a). However, the actual slack used
is less than 5% of the primary objective and C-LQL requires less
slack to produce less NSEs than other approaches (Figure 4b).
Minimizing NSEs We explore the scalability of our approach
varying the problem size in number of agents and density. We use
sparse and dense problem setups for this experiment. The 4 agent
problem is a dense problemwith an interaction graph of max degree
of 3 where each agent operates on a small grid of size 5 × 20. The
5, 6, 7 agents problems are sparse problems with a small grid size
for 5 and 6 agents problems and a large grid size for the 7 agents
problems. As seen from the experiments with slacks, the actual
slack used by the agents is much lower than the maximum allowed
slack. Therefore, each agent is given a 100% of assigned slack for this
experiment. Figure 5 shows the performance of different approaches
in different problem sizes. In all the problem setups,C-LQL performs
better than the other two approaches with the best result of 90%
reduction in NSEs in the 7 agent setup. The breakdown of actual
slack used by different agents is shown in Table 1. I-LQL uses less
slack than C-LQL and NoCom-LQL in most the cases. However, it
performs worse in minimizing NSEs than the other two approaches.
Learning Human Feedback Model Figure 6 shows the percent-
age of remaining NSEs after using C-LQL with learned human
feedback models with queries. In the boxpushing domain, the ran-
dom query approach C-LQL RQ performs significantly well as the



(a) Boxpushing

(b) Painter Robots

Figure 6: Effects of learning from human feedback in (a)
boxpushing and (b) painter robots domain

training budget increases (Figure 6a). Trajectory sampling, C-LQL T,
however, tends to fluctuate with increasing training budgets. This
is because it only collects feedback based on trajectories following
the 𝜖−greedy policy of its optimal primary policy, and therefore, it
fails to generalize well to unseen joint state actions. Interestingly,
the performance of C-LQL RQ is comparable to C-LQL Oracle which
simulates the problem with a perfect, noise-free human feedback
model. In the painter robots domain, initially, the C-LQL RQ per-
forms better than the C-LQL T approach. With increasing query
budget, however, both C-LQL RQ and C-LQL T performs equally
and are able to minimize 50% occurrences of side effects (Figure 6b).
Convergence of Lexicographic Q-learning Figure 7 provides
a comparative analysis of convergence between different Lexi-
cographic Q-learning approaches with the increasing number of
agents. In both Figure 7a and 7b, I-LQL converges faster than both
C-LQL and NoCom-LQL. This is not surprising because I-LQL solves
a problem with a smaller state space as it treats the problem as a
single-agent problem. However, obtaining the perfect single-agent
reward model is a non-trivial problem when the NSEs are a factor
of agents’ joint actions. Furthermore, C-LQL and NoCom-LQL have
an equal convergence rate where both of them converge within
2000 episodes.

7 CONCLUSION AND FUTUREWORK
We formulate the problem of minimizing NSEs in multi-agent sys-
tems as a Lexicographic DEC-MDP, which encodes NSEs via a

(a) 5 agents

(b) 6 agents

Figure 7: Convergence of different approaches in the box-
pushing domain

local interaction structure. We propose a framework for minimiz-
ing such NSEs using a synergy of approaches from lexicographic
multi-objective learning and DCOPs. The proposed model-free lex-
icographic Q-learning approach facilitates coordination without
sharing model information. A key advantage of our approach is
that it allows agents to independently optimize their primary objec-
tives while concurrently providing opportunities to learn and adapt
to feedback about NSEs during agent deployment. Discovery and
handling of NSEs during deployment without compromising the
agents’ performance with their primary assigned tasks is crucial in
many domains. Hence, the proposed approach allows the agents to
coordinate without the need to suspend operations and redesign
their primary reward function, which may necessitate extensive
testing.

Our proposed framework is shown empirically to be effective
in minimizing undesirable side effects. Our analysis shows that
C-LQL minimizes NSEs in different problem settings better than
the uncoordinated version, without using much slack. In future
work, we aim to extend our approach to handle a more general
class of multi-agent problems where the side effects are generated
by dynamic interactions among subsets of agents.
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