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ABSTRACT
This paper presents a novel approach to address the Production

Routing Problem with Privacy Preserving (PRPPP) in supply chain

optimization. The integrated optimization of production, inventory,

distribution, and routing decisions in real-world industry appli-

cations poses several challenges, including increased complexity,

discrepancies between planning and execution, and constraints

on information sharing. To mitigate these challenges, this paper

proposes the use of intelligent agent negotiation within a hybrid

Multi-Agent System (MAS) integratedwith optimization algorithms.

The MAS facilitates communication and coordination among en-

tities, encapsulates private information, and enables negotiation.

This, along with optimization algorithms, makes it a compelling

framework for establishing optimal solutions. The approach is sup-

ported by real-world applications and synergies between MAS and

optimizationmethods, demonstrating its effectiveness in addressing

complex supply chain optimization problems.
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1 INTRODUCTION
Supply chain decisions proceed sequentially, with steps that typi-

cally operate in isolation with fixed parameters set by adjacent ones.

For instance, in the distribution of paper production, a supply team

identifies a distribution center that needs a specific product quantity,

requesting it from a designated factory. Subsequently, the factory

initiates production to meet the predetermined demands. Usually

aiming to optimize operational costs, they are framed as combi-
natorial optimization problems. Methods like Mixed-Integer

Programming or heuristics are then employed for effective plan-

ning.
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Though solving steps separatelymay yield optimal or suboptimal,

yet effective, solutions, integrated planning offers financial benefits.

Studies show operational cost reductions ranging from 3% to 20%

[4], and a systematic review estimates an 11.08% [9] cost reduction

compared to sequential solutions.

Several challenges make the integrated optimization of these de-

cisions difficult in real-world industry applications: (1) Increased
complexity of decisions: Unifying business rulesmakes problems

too large for commercial solutions, increasing the complexity of

added variables and constraints significantly; (2) Discrepancy be-
tween planning and execution: Operational reality complexities,

like unforeseen events or lack of confidence in the provided solution,

may lead to deviations between execution and planning strategies,

necessitating real-time replanning. When these replannings do not

occur through an optimization method, the decisions made can be

suboptimal, resulting in financial losses; and (3) Constraints on
information sharing: Privacy and information protection play

an important role in real-world applications. Organizational con-

straints and privacy-preserving may limit access to essential infor-

mation for decision-making. This can result in suboptimal plans or

increased operational-level replanning due to a lack of a faithful

representation of reality.

The increased complexity of decisions resulting from the integra-

tion can be mitigated by applying advanced optimization methods,

such as decompositions, meta-heuristics, matheuristics, and hybrid

optimization algorithms.

An automated system can be implemented to tackle the discrep-

ancy between planning and execution. This system reads real-time

data as input, identifies deviations, and re-executes optimization al-

gorithms to reconstruct the optimal plan for immediate adherence.

However, conventional optimization methods may not effec-

tively address constraints on information sharing, such as privacy

preservation or information protection between departments. If

crucial information is withheld from the optimization algorithm,

it cannot incorporate it into its search for the optimal solution,

potentially leading to suboptimal outcomes.

This paper addresses the three aforementioned challenges, cre-

ating a hybrid Multi-Agent System (MAS) integrated with opti-

mization algorithms to solve the Production Routing Problem with

Privacy Preserving (PRPPP). In short, we foresee that agents rep-

resenting different clients can propose alternative solutions using

exclusively local data, therefore enhancing privacy-preserving.

A MAS automates plan generation and decision negotiation

among entities, allowing diverse forms of reasoning to collaborate

for solutions. Intelligent agents integrate with optimization algo-

rithms to address complex optimization problems by decomposing



them into simpler subproblems. Additionally, agents encapsulate

private information, enabling negotiation without revealing strate-

gies yet incorporating them into final planning solutions.

In [13], applications and synergies between agents and automa-

tion are explored. Additionally in [12], collaborative control mech-

anisms are introduced to address real-time optimization challenges

in the planning and resource allocation of small to medium-sized

enterprises.

Furthermore, an application case of intelligent agents is pre-

sented in [11], where they handle decisions related to production

and transportation. Additionally, agents can be used to reformu-

late problems as Distributed Constraint Optimization Problems

(DCOP) when the problem is so complex or requires information

privacy that its integrated resolution becomes unfeasible [8]. Agents

can also coordinate solutions from different meta-heuristics to ad-

dress Production and Distribution Planning Problems (PDPP) [10]

and even negotiate among themselves to determine the best meta-

heuristic for solving a specific multi-objective problem [6]. Other

synergies between Evolutionary Computation (EC) and MAS are

discussed in [7].

2 THE PRODUCTION ROUTING PROBLEM
(PRP)

Back to the paper industry example, the supply chain can be seg-

mented into four distinct steps, each involving specific decisions:

(1) Production: determining the choice of product, size and its tim-

ing for manufacturing; (2) Inventory: deciding the optimal size and

duration for a product to remain in warehouses; (3) Distribution:
assigning products to specific distribution centers and scheduling

their arrival times; and (4) Routing: identifying the most efficient

routing option based on a distribution plan.

The Production Routing Problem (PRP) includes all four steps

integrated within its decision-making framework. Classical math-

ematical models compose the PRP, such as the Vehicle Routing

Problem (VRP) [5], a well-known NP-hard problem, and the Lot-

Sizing Problem (LSP) [14].

Figure 1: Production Routing Problem (PRP) [1]

The domain of the PRP is defined by a complete graph G = (N,
A), where N represents the set of the supplier and retailers indexed

by i ∈ {0, ...,n} and A = {(i, j) : i, j ∈ N , i , j} is the set of arcs
connecting the supplier and retailer. The supplier is represented by

node 0, and the set of retailers is defined as NC = N \{0}. A single

product is manufactured in the factory and delivered to retailers by

a set of identical vehicles K = {1, ...,m} over a discrete and finite

set of periodsT = {1, ..., l}, aiming to satisfy their demands in each

period. Figure 1 depicts the graph G with its nodes N and arcs A.
The objective of the PRP is to provide the planning of deliveries

and production for a determined time horizon while minimizing

production costs, inventory costs (both at the supplier’s and retail-

ers’ levels), and transportation costs, as shown in Equation 1:

min
∑
t ∈T

(upt + f yt +
∑
i ∈N

(hi Iit ) +
∑

(i , j)∈A

(ci j
∑
k ∈K

xi jkt )) (1)

where pt is the production quantity in period t; yt is equal to 1

if there is production at the factory in period t, 0 otherwise; Iit is
the inventory at node i at the end of period t; xi jkt is equal to 1 if a
vehicle k travels directly from node i to node j in period t. Ssee full
PRP’s formulation, decision variables and parameters description

in Appendix A.

A review of its mathematical formulations can be found in [2].

The PRP holds practical significance within a Vendor Managed

Inventory (VMI) approach [2]. In this context, the supplier not

only monitors retailers’ inventory levels but also makes decisions

regarding the replenishment policy for each retailer.

It functions effectively when assuming the supplier has complete

control over retailers’ decisions. However, let’s consider a scenario

where the supplier lacks crucial information about retailers, such as

their inventory costs, and retailers have the ability to negotiate with

the supplier to expedite or defer certain deliveries. In this scenario,

the PRP may no longer be entirely applicable, and the methods

previously studied for its resolution may not be entirely suitable.

The model that represents this specific scenario is the Production
Routing Problem with Privacy Preserving (PRPPP). Due to

the privacy preservation, the term

∑
i ∈N (hi Iit ) from the PRP’s

objective function, regarding the inventory costs of every node (i.e.,

supplier and retailers’), is affected and becomes h0I0t , keeping only
the inventory costs from the supplier, which they have access.

3 THE PRODUCTION ROUTING PROBLEM
WITH PRIVACY PRESERVING (PRPPP)

Assuming a PRPPP instance with a 6-month horizon, the solution

output must contemplate the supplier’s delivery plan to each re-

tailer for the whole six months. Notably, not every retailer will

receive deliveries every month; they may be concentrated in spe-

cific months to meet their demand. The variable transportation and

production costs associated with each delivery period are reflected

by the supplier in the form of shipping and product prices charged

to retailers. In order to fulfill each retailer’s demand plan with over-

all cost reduction, the supplier will receive the delivery preferences

from retailers and propose optimal agendas for negotiation. These

negotiations will be influenced by the changing shipping and prod-

uct costs at each proposed delivery period, as well as the inventory

costs unique to each retailer, which only they are aware of. The

optimal negotiation agendas continue until a stopping criterion is

met.



3.1 Input Data
The model takes as input data the parameters described in Section

2, including:

• Demand plan (dit ): Each retailer (index i) must fulfill a spe-

cific demand plan; for example, requiring eight product units

in months 3, 4, and 5 within a 6-month horizon (index t ),
totaling 24 units.

• Supplier and retailers inventory costs (hi ): Distinct inven-
tory costs influence retailer preferences when deciding on

delivery negotiations. Supplier inventory costs are translated

into product prices charged to retailers. These costs are fixed

and known only to the respective supplier or retailer.

• Unit production cost (u) and setup cost (f ): These impact

the supplier’s production expenses, translated into product

prices charged to retailers. Setup costs are fixed charges

during production. Unit production costs fluctuate with the

quantity produced; e.g., if the supplier produces 140 units in

month 2 and 200 units in month 4, with variable production

costs of 8 and setup costs of 1500, the total cost for the

horizon is (140 * 8 + 1500) + (200 * 8 + 1500) = 5720.

• Coordinates of the supplier and retailers: Geographical lo-

cations used to generate routes and compute transportation

costs.

• Transportation costs (ci j ): Calculated proportional to the

Euclidean distance between the supplier and a retailer or

between retailers. The total cost of a route is the sum of costs

for each segment.

• Maximum capacities: Maximum production (C), vehicle (Q)
and inventory (Li ) capacities may limit overall decisions.

• Initial inventory levels (Ii0): Initial levels for both suppliers

and retailers at the planning horizon’s start.

3.2 Agents
As seen in Figure 1, the suppliers and retailers are the two agent

types.

The Supplier agent (Node 0 in set N ) aims to determine deliv-

eries for each period to retailers while minimizing production and

transportation costs. The supplier agent is a coordinator agent,
responsible for coordinating retailer preferences, proposing optimal

negotiation agendas, and mediating negotiations. The coordinator

has total system knowledge, except for specific retailers’ inventory

costs. Their actions include:

• initialsol: generates an initial solution based on input data

and retailers’ ordered delivery preferences, considering the

first delivery preference of each retailer while respecting

production, vehicle and inventory capacities constraints.

• optagendaXS: generates an optimal negotiation agenda, propos-

ing insertions, removals and substitutions of retailers’
deliveries.

Retailer agents (NC = N \{0}) have a demand plan and commu-

nicate delivery preferences to the supplier. Represented by agents
with partial knowledge, they are aware of specific inventory

costs but lack information about shipping and product prices un-

til proposed during negotiations. Retailers know which retailers

are part of their neighborhoods and their proximity. Their actions

include:

• negotiate: participate in a negotiation agenda transaction,

deciding on the suggested change based on their delta utility,

i.e., selecting the change that would most satisfy the agent’s

preferences or goals.

• vote: changes in neighborhood delivery plans may impact

shipping and product prices from their retailers. Retailers

are then selected to vote on the proposed changes; if the

majority agrees, changes are implemented.

Apart from the agents and optimization algorithm, the model

encompasses other components:

• Neighborhood: Retailers access information about their neigh-

borhood, i.e., other retailers with deliveries in the same pe-

riod and corresponding Euclidean distances. The supplier

updates the neighborhood with any solution plan changes.

• Planning board: Carries initial and current solutions, updated

after each successful negotiation. The supplier has access to

all information, while retailers only see what directly affects

them.

• Transaction pool: Contains information about the current

transaction, including negotiating retailers, affected retailers

selected to vote on proposed changes of their neighborhoods,

and resulting outcomes.

4 NEGOTIATION PROTOCOL
4.1 Utility
Let Nbt ∈ N \{0} the set of the retailers in the neighborhood of

each period t, nbt the total quantity of retailers in Nbt and n the

total quantity of retailers in NC . The utility of each retailer c is
defined by Equation 2:

Uc = −(
∑
t ∈T

(hc Ict+
∑

(i , j)∈A

(ci j
∑
k ∈K xi jkt )

nbt
)+

(upt + f yt + h0I0t )

n
)

(2)

The first term explains retailer c’s specific inventory costs. The

second term is the shipping price from the supplier, translated

into transportation costs for neighborhoods where c has deliveries
and normalized by total retailers in those areas. The last term is

the supplier’s product price, translated into production, setup, and

inventory costs for the entire horizon and normalized by the total

quantity of retailers in the plan.

Retailers negotiate or vote in favor of a transaction only if their

delta utility is positive, indicating lower costs and prices after

changes. Notably, alterations to another retailer’s delivery plan

can affect the overall utility of that retailer.

4.2 Agenda Transactions
From retailers’ delivery preferences, the supplier generates an opti-

mal negotiation agenda and proposes changes to delivery plans, as

following:

• Removal: The supplier identifies a chance to eliminate a

retailer’s delivery in a specific period, reducing shipping

prices for that neighborhood. Note that if a removal happens,

the same quantity must be added to another period where

the retailer already has a delivery, adhering to demand and



inventory constraints. This shouldn’t trigger voting in the

other neighborhood, as shipping prices aren’t unit-specific.

• Insertion: This happens when the supplier suggests adding

a delivery for a retailer in a neighborhood where they had

none before, increasing shipping prices for that area and

reducing approval chances. The inserted quantity should be

taken from another neighborhood with a current delivery

to avoid triggering its voting phase. Insertions are accepted

only if they significantly reduce product prices or when

proposed along with removals.

• Substitution: The supplier identifies an opportunity for an

insertion and removal affecting two different neighborhoods.

Voting in the first neighborhood is mostly against the change,

while the second neighborhood is in favor. Since the first

neighborhood outnumbers the second, the overall voting

fails. To address this, the supplier proposes a substitution

with another retailer’s delivery in those neighborhoods to

enhance acceptance chances.

Each proposal undergoes a transaction, negotiated among the re-

tailers directly affected by changes to their delivery plans, and

is subsequently voted on by retailers who are indirectly affected

(experiencing an increase or decrease in shipping/product prices).

Figure 2: Transaction 1 - Insertion combined with a removal for a delivery
of 10 units of product from retailer 3, anticipating it from period 2 to 1.

Figure 3: Transaction 1 - Negotiation and voting phases. As the delta utility
from retailer 3 is positive for the proposed change, the voting phase is trig-
gered. The result is a tie - 2 in favor and 2 against the change, so the supplier
vote in favor in order to break the tie. This results in a successful transaction.
(See complete calculation record in Appendix A)

The full system flow is represented by Algorithm 1.

5 CONCLUSIONS AND FUTUREWORK
The study highlights MAS benefits in addressing critical challenges

in applying optimization to supply chain planning, especially in

Figure 4: Transaction 2 - Substitution between two retailers’ deliveries. Re-
tailer 4 has a delivery of 5 units anticipated to period 1, while retailer 2 has a
delivery of 15 units postponed to period 2.

Figure 5: Transaction 2 - Negotiation and voting phases. Retailers 2 and 4
negotiate and decide to apply changes only for retailer 2 (Y, N). Subsequently,
the voting phase is triggered, with 3 votes in favor and 2 against. Then, the
transaction succeeds only for the change in the delivery plan of retailer 2.
(See complete calculation record in Appendix A)

Algorithm 1 PRPPP

1: deliveryprefs: retailers send supplier their delivery preferences

2: initialsol: supplier generates a initial solution
3: procedure ImprovePRPPP(initial sol., delivery prefs.)

4: Calculate stopping criterion

5: while stopping criterion not met do
6: optagenda: supplier generates optimal agenda

7: for transaction in agenda do
8: negotiate: ask the affected retailers to negotiate

9: vote: ask the affected neighborhoods to vote

10: if negotiate returns true and vote returns true then
11: Supplier updates the current delivery plan

12: else
13: Do not update the current delivery plan

14: end if
15: end for
16: Calculate stopping criterion

17: end while
18: return Final delivery plan

19: end procedure

the context of privacy preservation. The PRP, a known literature

problem, is adapted to consider information constraints (PRPPP).

This work proposes a hybrid MAS and optimization framework to

solve it.

Future work involves defining algorithms for optimal agenda and

initial solution generation, integrating heuristic algorithms. The

establishment of a stopping criterion is necessary, considering that

it should not be based only on a percentage of initial cost reduction,

since the optimal solution is unknown. Furthermore, discrepancies

between planning and execution may be addressed by adapting and

automating the proposed framework for real-time optimization.
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A PRP FORMULATION
Formulation by [3]:

Parameters:

• u unit production cost;

• f fixed production setup cost;

• hi unit inventory cost at node i (supplier and retailers);

• ci j transportation cost from node i to node j;
• dit demand from retailer i in period t;
• C production capacity;

• Q vehicle capacity;

• Li maximum or target inventory level at node i;
• Ii0 initial inventory availabe at node i.

Decision variables:

• pt production quantity in period t;
• Iit inventory at node i at the end of period t;
• yt equal to 1 if there is production at the factory in period t,
0 otherwise;

• z
0kt equal to 1 if vehicle k left the factory (node 0) in period

t, 0 otherwise;
• zikt equal to 1 if customer iwas visited by vehicle k in period
t, 0 otherwise;

• xi jkt equal to 1 if a vehicle travels directly from node i to
node j in period t;

• qikt quantity delivered to customer i in period t.

min
∑
t ∈T

(upt + f yt +
∑
i ∈N

(hi Iit ) +
∑

(i , j)∈A

(ci j
∑
k ∈K

xi jkt )) (3)

s .t . I0,t−1 + pt =
∑
i ∈NC

∑
k ∈K

qikt + I0t ∀t ∈ T (4)

Ii ,t−1 +
∑
k ∈K

qikt = dit + Iit ∀i ∈ NC ,∀t ∈ T (5)

pt ≤ Mtyt ∀t ∈ T (6)

I0t ≤ L0 ∀t ∈ T (7)

Ii ,t−1 +
∑
k ∈K

qikt ≤ Li ∀i ∈ NC ,∀t ∈ T (8)

qikt ≤ Mitzikt ∀k ∈ K,∀i ∈ NC ,∀t ∈ T (9)∑
k ∈K

zikt ≤ 1 ∀i ∈ NC ,∀t ∈ T (10)

∑
j ∈N

x jikt +
∑
j ∈N

xi jkt = 2zikt ∀k ∈ K,∀i ∈ N ,∀t ∈ T (11)

∑
i ∈NC

qikt ≤ Qz
0kt ∀k ∈ K,∀t ∈ T (12)

∑
i ∈S

∑
j ∈S

x jikt ≤ |S | − 1 ∀S ⊆ NC : |S | ≥ 2,∀k ∈ K,∀t ∈ T (13)

pt , Iit ,qikt ≥ 0 ∀i ∈ N ,∀k ∈ K,∀t ∈ T (14)

yt , zikt , xi jkt ∈ 0, 1 ∀i, j ∈ N ,∀k ∈ K,∀t ∈ T (15)

The objective function (1) minimizes the total costs of production,

production setup, factory and customer inventories, and delivery

routing. Constraints (4)-(8) represent the lot-sizing problem. Con-

straints (4) and (5) enforce the stock flow balance at the factory and

customers, respectively. Constraint (6) ensures that the production

setup variable (yt ) equals one if production occurs in a specific

period and limits the production quantity to the minimum between

the production capacity and the total demand in the remaining pe-

riods (Mt ). Constraints (7) and (8) restrict the maximum inventory

at the factory and customers, respectively.

The remaining constraints, i.e., (9)-(13), are the vehicle load and

routing constraints. Constraints (9) allow a positive delivery quan-

tity only if customer i is visited in period t, and each customer can

be visited by at most one vehicle (10). Constraints (11) ensure the

flow conservation of vehicles. Constraints (12) limit the quantity of

product that can be transported by each vehicle. Constraints (13)

are the Subtour Elimination Constraints (SECs), similar to those in

the Traveling Salesman Problem (TSP). Constraints (14) and (15)

represent the domains of non-negative continuous variables and

binary variables, respectively.

B TRANSACTIONS’ CALCULATION RECORD
Assuming no change was made in the production plan, the retailer’s

utility every period t is calculated as following:

U t
c = (hc Ict ) +

∑
(i , j)∈A

(ci j
∑
k ∈K

xi jkt )/nbt (16)

The delta utility between two states of the same period t can be

calculated by subtracting the utility of the initial state from that of

the final state:

∆U t
c = U

t
c ,f −U t

c ,0 (17)

Then, the total delta utility for two periods, e.g. t = 1 and t = 2,
can be calculated as follows:∑

t ∈[1,2]

∆U t
c = ∆U 1

c + ∆U
2

c (18)

The inventory cost hc is an intrinsic parameter from every re-

tailer. The term Ict represents the decision variables of a retailer’s

demand plan. The shipping cost, denoted by

∑
(i , j)∈A(ci j

∑
k ∈K xi jkt )/nbt ,

illustrates the aggregate costs of each route segment highlighted in

green in Figures 2 and 4 - the numerical values in green represent

their calculated costs.



B.1 Transaction 1
∆U 1

3
= U 1

3,f −U
1

3,0 = [−(2∗0+(200+320+200+200+300)/4)]−(0) = −325

(19)

∆U 2

3
= U 2

3,f −U
2

3,0 = (0)−[−(2∗10+(200+320+200+300)/3)] = +340

(20)

∆U 1

1,2,4 = −(200 + 320 + 200 + 200 + 300)/4)

−[−(200 + 500 + 200 + 300)/3] = 95

(21)

∆U 2

1,2 = −(200+400+300)/2)−[−(200+320+200+300)/3] = −110

(22)

∆U 2

4
= 0 (23)

Thus, ∑
t ∈[1,2]

∆U t
3
= ∆U 1

3
+ ∆U 2

3
= −325 + 340 = 15 (24)

∑
t ∈[1,2]

∆U t
1,2 = ∆U 1

1,2 + ∆U
2

1,2 = 95 + (−110) = −15 (25)

∑
t ∈[1,2]

∆U t
4
= ∆U 1

4
+ ∆U 2

4
= 95 + 0 = 95 (26)

B.2 Transaction 2

Figure 6: Transaction 2 - Substitution between two retailers’
deliveries. Negotiation outcome (Y, N).

Figure 7: Transaction 2 - Substitution between two retailers’
deliveries. Negotiation outcome (N, Y).

Along with Figure 4, Figure 6 and 7 illustrates the Transaction

2 outcomes (Y, N) and (N, Y) respectively. Their updated shipping

costs are represented in green. The total delta utility is calculated

for every outcome. For the (Y, Y) outcome:

∆U 1

2
= U 1

2,f −U
1

2,0 = 0−[−(2∗15+(200+400+350+300)/3)] = 446.7

(27)

∆U 2

2
= U 2

2,f −U
2

2,0 = [−(2∗0+(200+320+200+300)/3)]−(0) = −340

(28)

∆U 1

4
= −(3 ∗ 5 + (450 + 200 + 200 + 300)/3) − (0) = −398.3 (29)

∆U 2

4
= 0 − [−(3 ∗ 0 + (400 + 150 + 200 + 300)/3)] = 350 (30)

Thus, ∑
t ∈[1,2]

∆U t
2
= ∆U 1

2
+ ∆U 2

2
= 446.7 − 340 = 106.7 (31)∑

t ∈[1,2]

∆U t
4
= ∆U 1

4
+ ∆U 2

4
= −398.3 + 350 = −48.3 (32)

For the (Y, N) outcome:

∆U 1

2
= 0 − [−(2 ∗ 15 + (200 + 400 + 350 + 300)/3)] = 446.7 (33)

∆U 2

2
= −(2∗0+(200+320+150+200+300)/4)]−(0) = −292.5 (34)

∆U 1

4
= 0 (35)

∆U 2

4
= −(3 ∗ 0 + (200 + 320 + 150 + 200 + 300))/4

−[−(3 ∗ 0 + (400 + 150 + 200 + 300)/3)] = 57.5
(36)

Thus, ∑
t ∈[1,2]

∆U t
2
= ∆U 1

2
+ ∆U 2

2
= 446.7 − 292.5 = 154.2 (37)∑

t ∈[1,2]

∆U t
4
= ∆U 1

4
+ ∆U 2

4
= 0 + 57.8 = 57.5 (38)

For the (N, Y) outcome:

∆U 1

2
= −[2 ∗ 15 + (200 + 400 + 200 + 200 + 300)/4]

−[−(2 ∗ 15 + (200 + 400 + 350 + 300)/3] = 91.7
(39)

∆U 2

2
= 0 (40)

∆U 1

4
= −(3∗5+ (200+400+200+200+300)/4)− (0) = −340 (41)

∆U 2

4
= 0 − [−(3 ∗ 0 + (400 + 150 + 200 + 300)/3)] = 350 (42)

Thus, ∑
t ∈[1,2]

∆U t
2
= ∆U 1

2
+ ∆U 2

2
= 91.7 + 0 = 91.7 (43)∑

t ∈[1,2]

∆U t
4
= ∆U 1

4
+ ∆U 2

4
= −340 + 350 = 10 (44)



Since the (Y, N) transaction outcome was chosen by retailers 2

and 4 in the negotiation, retailers 1, 3 and 5 are asked to vote in

favor or against it. Thus, their delta utility for the voting phase is

calculated as:

∆U 1

1,5 = −(450+350+300)/2)−[−(200+400+350+300)/3] = −133.3

(45)

∆U 1

3
= 0 (46)

∆U 2

1,3 = −(200 + 320 + 150 + 200 + 300)/4)

−[−(400 + 150 + 200 + 300)/3] = 57.5
(47)

∆U 2

5
= 0 (48)

Thus,∑
t ∈[1,2]

∆U t
1
= ∆U 1

1
+ ∆U 2

1
= −133.3 + 57.5 = −75.8 (49)

∑
t ∈[1,2]

∆U t
3
= ∆U 1

3
+ ∆U 2

3
= 0 + 57.5 = 57.5 (50)∑

t ∈[1,2]

∆U t
5
= ∆U 1

5
+ ∆U 2

5
= −133.3 + 0 = −133.3 (51)
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